TABLE 1

PSNH STATE LAND CROSSINGS

State Land	Town	Line \#
Nash Stream State Forest	Stark	O154-115 kV
Percy State Forest	Stark	O154-115 kV
Cape Horn State Forest	Northumberland	D142-115 kV
Groveton Branch RR Crossing	Lancaster	D142-115 kV
Groveton Branch RR Crossing	Dalton	E115-115 kV
State Police Firing Range	New Hampton	M127-115 kV
Rail Trail	Franklin	F139-115 kV
Rail Trail	Franklin	F139-115 kV
Concord-Lincoln RR Crossing	Franklin	F139-115 kV
Vacant Land	Franklin	F139-115 kV
Concord-Lincoln RR Crossing	Pembroke	P145-115 kV
State of New Hampshire - Adjutant		
General's Department	C189 (formerly V182)-115 kV	
State of New Hampshire - Adjutant		
General's Department		


```
                        APPENDIX }
                    0154 AC LINE
    STRUCTURES 0154-42 TO 0154-49
STATE OF NEW HAMPSHIRE- DEPARTMENT OF RESOURCES AND ECONOMIC DEVELOPMENT
NASH STREAM STATE FOREST
                                    LL }1251
STARK,NH
```

1. This crossing is shown on attached drawing 015499002
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1^{\prime}.
2. The location of the O 154 line is shown on attached maps titled Line List 12519
3. This portion of the O 154 line will be on steel structures. The energized conductor is in a vertical configuration using 795 kcmil . The structures will have 1 ground wire, OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The O 154 line crosses the parcel LL 12519 State of New Hampshire - Department of Resources of Economic Development, Nash Stream State Forest for approximately 4080'.
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice).
5. The O 154 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.
Path: IIESPSRVDatalData2IProjectsiNUSI53899_DC_TlinelGISDataFilesIArcDocsIState_Land_MapsIState_Land_Crossing_Permit_LL12519_Lettersize.mxd fraser $8 / 21 / 2015$

LEGEND

Parcel Boundary
Project ROW
Town Boundary

Line List 12519
State Land Crossing Permit Location Map


```
                        APPENDIX 2
                                    O154 AC LINE
    STRUCTURES O154-63 TO 0154-66
STATE OF NEW HAMPSHIRE- DEPARTMENT OF RESOURCES AND ECONOMIC DEVELOPMENT
                                    PERCY STATE FOREST
                                    LL }1254
                    STARK,NH
```

1. This crossing is shown on attached drawing 015499001
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1^{\prime}.
2. The location of the O 154 line is shown on attached maps titled Line List 12547
3. This portion of the O 154 line will be on steel structures. The energized conductor is in a vertical configuration using 795 kcmil . The structures will have 1 ground wire, OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The $\mathbf{O} 154$ line crosses the parcel LL 12547 State of New Hampshire - Department of Resources of Economic Development, Percy State Forest for approximately 2000'.
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice).
5. The O 154 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.

```
APPENDIX 3
D142 AC LINE
STRUCTURES D142-322 TO D142-343
STATE OF NEW HAMPSHIRE- DEPARTMENT OF RESOURCES AND ECONOMIC DEVELOPMENT CAPE HORN STATE FOREST
LL 2030, 2034, 2037
NORTHUMBERLAND, NH
```

1. This crossing is shown on attached drawing D14299001
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1^{\prime}.
2. The location of the D142 line is shown on attached maps titled Line List 2030, Line List 2034, Line List 2037.
3. This portion of the D142 line will be on steel structures. The energized conductor is in a vertical configuration using 795 kcmil . The structures will have 1 ground wire, OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The D142 line crosses the parcel LL 2030, State of New Hampshire - Department of Resources of Economic Development, Cape Horn State Forest for approximately 1,670’
b. The D142 line crosses the parcel LL 2034, State of New Hampshire - Department of Resources of Economic Development, Cape Horn State Forest for approximately 10,830’
c. The D142 line crosses the parcel LL 2037, State of New Hampshire - Department of Resources of Economic Development, Cape Horn State Forest for approximately 620’
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, ½-inch radial ice).
5. The D 142 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.

APPENDIX 4
D142 AC LINE
STRUCTURES D142-376 TO D142-377
STATE OF NEW HAMPSHIRE - BUREAU OF RAIL \& TRANSIT
GROVETON BRANCH
LL 2236
LANCASTER, NH

1. This crossing is shown on attached drawing D14243601
2. The location of the D142 line is shown on attached maps titled Line List 2236
3. The D142 line will be on steel structures at this crossing. The energized conductor is in a vertical configuration using 795 kcmil ACSR. The structures will have ground wire. OPGW with sag coefficients similar to 19\#10 Alumoweld will be used.
a. D142-376 \& D142-377 will be structures with suspension insulators. The energized conductors are separated approximately 0 feet horizontally and 12 feet vertically in a vertical configuration. The ground/OPGW wire is carried on the structure by a support bracket approximately 6 inches below the top of the structure. The ground/OPGW and energized conductor are separated vertically by approximately 13 feet and 5 feet horizontally.
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice).
5. All NESC clearances described in subsequent paragraphs have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
6. The D142 is a 115 kV alternating current (AC) line.
a. Based on Table 232-1 of the NESC, for open supply conductors 750 V to 22 kV to ground, the minimum clearance to tracks of railroads is 26.5'. NESC Rule 232.C.1.a states that an additional clearance of 1.59 feet or [($69.7 \mathrm{kV}-22 \mathrm{kV}$) $\times 0.4] / 12$ is needed, which brings the total required minimum clearance to 28.1 feet.
b. For overhead ground wires, the minimum required clearance to tracks of railroad is 23.5 feet. As the static wires are located above the energized conductors at all crossings, this NESC minimum clearance requirement will always be met.
c. Table 235-1 of the NESC does not specify horizontal values for supply conductors of the same circuit for voltages greater than 50 kV . In the absence of this, the project will use values for different circuits. Based upon Table 235-1:
i. 3.07 feet is required between 115 kV AC energized conductor and ground wire
ii. 4.78 feet is required between 115 kV AC energized conductors
d. Based on Table 235-3 of the NESC for horizontal clearance along the span for wires or conductors carried on the same support
i. $\quad 5.69$ feet is required between 115 kV AC energized conductors and ground wire
ii. $\quad 6.96$ feet is required between 115 kV AC energized conductors
iii. These horizontal clearances assume conductor or wire sag of 35 feet which exceeds any sag at the location of these crossings.
e. Based on Table 235-5 of the NESC the vertical clearance required at the supports for wires or conductors carried on the same supporting structure is:
i. $\quad 3.37$ feet is required between 115 kV AC energized conductors and ground wire
ii. $\quad 5.07$ feet is required between 115 kV AC energized conductors
f. Based on Rule 235.C.2.b of the NESC, the vertical clearance required in the span for wires or conductors carried on the same supporting structure:
i. $\quad 2.69$ feet are required between 115 kV AC energized conductors and ground wire
ii. $\quad 5.01$ feet are required between 115 kV AC energized conductors
g. Per Figure 235-1 of the NESC conductors or wires cannot encroach the envelope formed by the horizontal and vertical clearances prescribed above.
7. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to the water and land surfaces, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the railroad track will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards, the maximum sag for this weather case results in a clearance to railroad track of 46 feet, this exceeds the minimum required clearance of 28.1 feet.
c. Minimum clearance energized conductor to ground wires clearance - The weather case that would produce the minimum clearance between energized conductors and ground wires would be a combination of winter weather factors. First, the energized conductors would be at 30 degrees F immediately following an ice storm and would have recently dropped their ice. The ground wires would be at 32 degrees F and would still be iced with $1 / 2^{\prime \prime}$ of radial ice. Under these conditions the clearance would be 9 feet
vertically and 6 feet horizontally from the ground wires to the closest energized conductor.

APPENDIX 5
 348X LINE
 STRUCTURES 348X-011 TO 348X-012
 STATE OF NEW HAMPSHIRE - BUREAU OF RAIL \& TRANSIT GROVETON BRANCH
 LL 2819
 DALTON, NH

1. This crossing is shown on attached drawing B-7627-601
2. The location of the 348 X line is shown on attached maps titled Line List 2819
3. The 348 X line will be on wood structures for this crossing. The energized conductor is in a horizontal configuration using 477 kcmil ACSR. The neutral wire will 4/0 AWG 6/1 ACSR.
a. Structures $348 \mathrm{X}-011$ to $348 \mathrm{X}-012$ will be distribution on wood poles. The energized conductors are separated approximately 5 feet horizontally and the middle phase will be approximately 1.5 feet higher than the outer phases. The neutral will be approximately 6 feet below phase conductors and 2 feet offset from center.
4. Energized conductors will have a maximum tension of 3,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Neutral wires will have a maximum tension of 3,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice).
5. All NESC clearances described in subsequent paragraphs have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
6. The 348 X is a 34.5 kV alternating current (AC) line.
a. Based on Table 232-1 of the NESC, for open supply conductors 750 V to 22 kV to ground, the minimum clearance to tracks of railroads is 26.5^{\prime}.
b. For neutral wires, the minimum required clearance to tracks of railroad is 23.5 feet.
c. Based on Table 235-1 of the NESC for horizontal values for supply conductors of the same circuit.
i. 1.4 feet is required between 34.5 kV AC energized conductor and neutral wire
ii. 1.9 feet is required between 34.5 kV AC energized conductors
d. Based on Table 235-3 of the NESC for horizontal clearance along the span for wires or conductors carried on the same support
i. $\quad 4.2$ feet is required between 34.5 kV AC energized conductors and neutral wire
ii. $\quad 4.6$ feet is required between 34.5 kV AC energized conductors
iii. These horizontal clearances assume conductor or wire sag of 30 feet which exceeds any sag at the location of these crossings.
e. Based on Table 235-5 of the NESC the vertical clearance required at the supports for wires or conductors carried on the same supporting structure is:
i. $\quad 1.7$ feet is required between 34.5 kV AC energized conductors and neutral wire
ii. 2.3 feet is required between 34.5 kV AC energized conductors
f. Based on Rule 235.C.2.b of the NESC, the vertical clearance required in the span for wires or conductors carried on the same supporting structure:
i. 1.3 feet are required between 34.5 kV AC energized conductors and neutral wire
ii. $\quad 1.7$ feet are required between 34.5 kV AC energized conductors
g. Per Figure 235-1 of the NESC conductors or wires cannot encroach the envelope formed by the horizontal and vertical clearances prescribed above.
7. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to the water and land surfaces, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations.
a. Neutral wire- is located below the energized conductor and has a smaller required clearance, however energized conductor clearances have been achieved for the neutral wire.
b. 120 degrees F - Maximum operating temperature (energized conductor) based on Eversource distribution standards, the maximum sag for this weather case results in a clearance to railroad track of 42 feet, this exceeds the minimum required clearance of 26.5 feet.
c. Minimum clearance between energized conductor to neutral wire clearance - The weather case that would produce the minimum clearance between energized conductors and neutral wire would be a combination of winter weather factors. First, the energized conductors would be at 32 degrees F and would still be iced with $1 / 21$ of radial ice. The neutral wire would be at 30 degrees F immediately following an ice storm and would have recently dropped their ice. Under these conditions the clearance would be 4.5 feet vertically and 3.02 feet horizontally from the ground wires to the closest energized conductor.

APPENDIX 6
 E115 LINE
 STRUCTURES E115-170 TO E115-170
 STATE OF NEW HAMPSHIRE- DEPARTMENT OF TRANSPORTATION STATE POLICE FIRING RANGE
 LL 6145
 NEW HAMPTON, NH

1. This crossing is shown on attached drawing E11599001
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1'.
2. The location of the E115 line is shown on attached maps titled Line List 6145.
3. This portion of the E115 line will be on steel structures. The energized conductor is in a vertical configuration using 795 kcmil . The structures will have 1 ground wire, OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The E115 line crosses the parcel LL 6145, State of New Hampshire - Department of Transportation for approximately 450'.
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, ½-inch radial ice).
5. The E115 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.

APPENDIX 7
 M127 LINE
 STRUCTURES M127-1A TO M127-1
 STATE OF NEW HAMPSHIRE- BUREAU OF RAIL AND TRANSIT
 RAIL TRAIL
 LL 7317.01
 FRANKLIN, NH

1. This crossing is shown on attached drawing M12799001
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1'.
2. The location of the M 127 line is shown on attached maps titled Line List 7317.01
3. This portion of the M127 line will be on steel structures. The energized conductor is in a horizontal configuration using 795 kcmil . The structures will have 2 ground wires in a horizontal configuration. One will be 19\#10 Alumoweld; the other will be an OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The M127 line crosses the parcel LL 7317.01, State of New Hampshire - Bureau of Rail and Transit for approximately 130'
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice).
5. The M 127 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.
Path: IUESPSRVDatalData2IProjectsINUSI53899_DC_TlinelGISDataFilesLArcDocsIState_Land_MapsIState_Land_Crossing_Permit_LL7317.01_Lettersize.mxd fraser 8/21/2015


```
                        APPENDIX }
                        F139 LINE
            STRUCTURES F139-342 TO F139-343
STATE OF NEW HAMPSHIRE- BUREAU OF RAIL AND TRANSIT
                                    RAIL TRAIL
                                    LL 7317.01
FRANKLIN,NH
```

1. This crossing is shown on attached drawing F13999002
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1^{\prime}.
2. The location of the F139 line is shown on attached map titled Line List 7317.01
3. This portion of the F139 line will be on steel structures. The energized conductor is in a delta configuration using 795 kcmil . The structures will have 1 ground wire, an OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The F139 line crosses the parcel LL 7317.01, State of New Hampshire - Bureau of Rail and Transit for approximately 130'
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 ⁄ 2$-inch radial ice).
5. The F 139 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.
Path: IUESPSRVDatalData2IProjectsINUSI53899_DC_TlinelGISDataFilesLArcDocsIState_Land_MapsIState_Land_Crossing_Permit_LL7317.01_Lettersize.mxd fraser 8/21/2015

APPENDIX 9
F139 LINE
STRUCTURES F139-281 TO F139-282
STATE OF NEW HAMPSHIRE - DEPARTMENT OF TRANSPORTATION
CONCORD-LINCOLN LINE
LL 7075
FRANKLIN, NH

1. This crossing is shown on attached drawing F13943601
2. The location of the F139 line is shown on attached maps titled Line List 7075
3. The F139 line will be on steel structures at this crossing. The energized conductor is in a vertical configuration using 795 kcmil ACSR. The structures will have ground wire. OPGW with sag coefficients similar to 19\#10 Alumoweld will be used.
a. F139-282 will be a structure with suspension insulators. The energized conductors are separated approximately 0 feet horizontally and 12 feet vertically in a vertical configuration. The ground/OPGW wire is carried on the structure by a support bracket approximately 6 inches below the top of the structure. The ground/OPGW and energized conductor are separated vertically by approximately 13 feet and 5 feet horizontally.
b. F139-281 will be a structure with strain insulators. The energized conductors are separated approximately 0 feet horizontally and 12 feet vertically in a vertical configuration. The ground/OPGW wire is carried on the structure by a support bracket approximately 6 inches below the top of the structure. The ground/OPGW and energized conductor are separated vertically by approximately 13 feet and 0 feet horizontally.
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, ½-inch radial ice).
5. All NESC clearances described in subsequent paragraphs have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
6. The F 139 is a 115 kV alternating current (AC) line.
a. Based on Table 232-1 of the NESC, for open supply conductors 750 V to 22 kV to ground, the minimum clearance to tracks of railroads is 26.5'. NESC Rule 232.C.1.a states that an additional clearance of 1.59 feet or [($69.7 \mathrm{kV}-22 \mathrm{kV}$) x 0.4$] / 12$ is needed, which brings the total required minimum clearance to 28.1 feet.
b. For overhead ground wires, the minimum required clearance to tracks of railroad is 23.5 feet. As the static wires are located above the energized conductors at all crossings, this NESC minimum clearance requirement will always be met.
c. Table 235-1 of the NESC does not specify horizontal values for supply conductors of the same circuit for voltages greater than 50 kV . In the absence of this, the project will use values for different circuits. Based upon Table 235-1:
i. 3.07 feet is required between 115 kV AC energized conductor and ground wire
ii. 4.78 feet is required between 115 kV AC energized conductors
d. Based on Table 235-3 of the NESC for horizontal clearance along the span for wires or conductors carried on the same support
i. $\quad 5.69$ feet is required between 115 kV AC energized conductors and ground wire
ii. $\quad 6.96$ feet is required between 115 kV AC energized conductors
iii. These horizontal clearances assume conductor or wire sag of 35 feet which exceeds any sag at the location of these crossings.
e. Based on Table 235-5 of the NESC the vertical clearance required at the supports for wires or conductors carried on the same supporting structure is:
i. $\quad 3.37$ feet is required between 115 kV AC energized conductors and ground wire
ii. $\quad 5.07$ feet is required between 115 kV AC energized conductors
f. Based on Rule 235.C.2.b of the NESC, the vertical clearance required in the span for wires or conductors carried on the same supporting structure:
i. $\quad 2.69$ feet are required between 115 kV AC energized conductors and ground wire
ii. $\quad 5.01$ feet are required between 115 kV AC energized conductors
g. Per Figure 235-1 of the NESC conductors or wires cannot encroach the envelope formed by the horizontal and vertical clearances prescribed above.
7. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to the water and land surfaces, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the railroad track will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards, the maximum sag for this weather case results in a
clearance to railroad track of 56 feet, this exceeds the minimum required clearance of 28.1 feet.
c. Minimum clearance energized conductor to ground wires clearance - The weather case that would produce the minimum clearance between energized conductors and ground wires would be a combination of winter weather factors. First, the energized conductors would be at 30 degrees F immediately following an ice storm and would have recently dropped their ice. The ground wires would be at 32 degrees F and would still be iced with $1 / 2$ " of radial ice. Under these conditions the clearance would be 12.1 feet vertically and 2.3 feet horizontally from the ground wires to the closest energized conductor.

LEGEND

Parcel Boundary
Project ROW
A
THE NORTHERN PASS
V

Line List 7075
State Land Crossing Permit Location Map

APPENDIX 10
F139 LINE
STRUCTURES F139-281 TO F139-281
STATE OF NEW HAMPSHIRE- DEPARTMENT OF TRANSPORTATION
VACANT LAND
LL 7076
FRANKLIN, NH

1. This crossing is shown on attached drawing F13999001
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1'.
2. The location of the F139 line is shown on attached maps titled Line List 7076
3. This portion of the F139 line will be on steel structures. The energized conductor is in a vertical configuration using 795 kcmil. The structures will have 1 ground wire, OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The F139 line crosses the parcel LL 7076 State of New Hampshire - Department of Transportation for approximately 160 .
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 ⁄ 2$-inch radial ice).
5. The F 139 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.

LEGEND

Parcel Boundary
Project ROW
Town Boundary

APPENDIX 11
F139 LINE
STRUCTURES F139-249 TO F139-250
STATE OF NEW HAMPSHIRE - DEPARTMENT OF TRANSPORTATION
CONCORD-LINCOLN LINE
LL 7616.1
CANTERBURY, NH

1. This crossing is shown on attached drawing F13943602
2. The location of the F139 line is shown on attached maps titled Line List 7616.1
3. The F139 line will be on steel structures at this crossing. The energized conductor is in a vertical configuration using 795 kcmil ACSR. The structures will have ground wire. OPGW with sag coefficients similar to 19\#10 Alumoweld will be used.
a. F139-250 will be a structure with suspension insulators. The energized conductors are separated approximately 0 feet horizontally and 12 feet vertically in a vertical configuration. The ground/OPGW wire is carried on the structure by a support bracket approximately 6 inches below the top of the structure. The ground/OPGW and energized conductor are separated vertically by approximately 13 feet and 5 feet horizontally.
b. F139-251 will be a structure with strain insulators. The energized conductors are separated approximately 0 feet horizontally and 12 feet vertically in a vertical configuration. The ground/OPGW wire is carried on the structure by a support bracket approximately 6 inches below the top of the structure. The ground/OPGW and energized conductor are separated vertically by approximately 13 feet and 0 feet horizontally.
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, ½-inch radial ice).
5. All NESC clearances described in subsequent paragraphs have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
6. The F 139 is a 115 kV alternating current (AC) line.
a. Based on Table 232-1 of the NESC, for open supply conductors 750 V to 22 kV to ground, the minimum clearance to tracks of railroads is 26.5'. NESC Rule 232.C.1.a states that an additional clearance of 1.59 feet or [($69.7 \mathrm{kV}-22 \mathrm{kV}$) $\times 0.4] / 12$ is needed, which brings the total required minimum clearance to 28.1 feet.
b. For overhead ground wires, the minimum required clearance to tracks of railroad is 23.5 feet. As the static wires are located above the energized conductors at all crossings, this NESC minimum clearance requirement will always be met.
c. Table 235-1 of the NESC does not specify horizontal values for supply conductors of the same circuit for voltages greater than 50 kV . In the absence of this, the project will use values for different circuits. Based upon Table 235-1:
i. 3.07 feet is required between 115 kV AC energized conductor and ground wire
ii. 4.78 feet is required between 115 kV AC energized conductors
d. Based on Table 235-3 of the NESC for horizontal clearance along the span for wires or conductors carried on the same support
i. $\quad 5.69$ feet is required between 115 kV AC energized conductors and ground wire
ii. $\quad 6.96$ feet is required between 115 kV AC energized conductors
iii. These horizontal clearances assume conductor or wire sag of 35 feet which exceeds any sag at the location of these crossings.
e. Based on Table 235-5 of the NESC the vertical clearance required at the supports for wires or conductors carried on the same supporting structure is:
i. $\quad 3.37$ feet is required between 115 kV AC energized conductors and ground wire
ii. $\quad 5.07$ feet is required between 115 kV AC energized conductors
f. Based on Rule 235.C.2.b of the NESC, the vertical clearance required in the span for wires or conductors carried on the same supporting structure:
i. $\quad 2.69$ feet are required between 115 kV AC energized conductors and ground wire
ii. $\quad 5.01$ feet are required between 115 kV AC energized conductors
g. Per Figure 235-1 of the NESC conductors or wires cannot encroach the envelope formed by the horizontal and vertical clearances prescribed above.
7. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to the water and land surfaces, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the railroad track will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards, the maximum sag for this weather case results in a
clearance to railroad track of 80 feet, this exceeds the minimum required clearance of 28.1 feet.
c. Minimum clearance energized conductor to ground wires clearance - The weather case that would produce the minimum clearance between energized conductors and ground wires would be a combination of winter weather factors. First, the energized conductors would be at 30 degrees F immediately following an ice storm and would have recently dropped their ice. The ground wires would be at 32 degrees F and would still be iced with $1 / 2$ " of radial ice. Under these conditions the clearance would be 12.3 feet vertically and 5.2 feet horizontally from the ground wires to the closest energized conductor.
Path: IIESPSRVDatalData21ProjectsINUSI53899_DC_TlinelGISDataFilesLArcDocsIState_Land_MapsIState_Land_Crossing_Permit_LL7616.1_Lettersize.mxd fraser 8/21/2015

APPENDIX 12
 P145 LINE
 STRUCTURES P145-67 TO P145-72
 STATE OF NEW HAMPSHIRE- ADJUTANT GENERAL'S DEPARTMENT
 PEMBROKE, NH

1. This crossing is shown on attached drawing P14599001
a. This drawing shows a 24^{\prime} terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1^{\prime}.
2. The location of the P145 line is shown on attached maps titled Line List 8954 \& Line List 8957
3. This portion of the P145 line will be on steel structures. The energized conductor is in a delta configuration using 795 kcmil . The structures will have 1 ground wire, an OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The P145 line crosses the parcel LL 8954, State of New Hampshire - Adjutant General Department for approximately $1,000^{\prime}$
b. The P145 line crosses the parcel LL 8957, State of New Hampshire - Adjutant General Department for approximately 2,450 '
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice).
5. The P 145 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.
Path: IIESPSRVDatalData2IProjectsINUSI53899_DC_TlinelGISDataFiles_ArcDocsIState_Land_MapsIState_Land_Crossing_Permit_LL8954_8957_Lettersize med fraser 8/21/2015 COPYRIGHT © 2015 BURNS \& McDONNELL ENGINEERING COMPANY, INC.

LEGEND

NORTH
1
Λ
THE NORTHERN PASS

z

public land
PRoposed monopole EXISTING MONOPOLE
PROPOSED TRANS PROPOSED TRAN
STRUCTURE EXISTING H-FRAME
PROPOSED H-FRAME

PRELIMINARY - NOT FOR CONSTRUCTION

APPENDIX 13
 C189 LINE
 STRUCTURES C189-32 TO C189-30
 STATE OF NEW HAMPSHIRE- ADJUTANT GENERAL'S DEPARTMENT
 PEMBROKE, NH

1. This crossing is shown on attached drawing C18999001
a. This drawing shows a 24 ' terrain clearance line (offset from ground surface), which is greater than required minimum of 16.1^{\prime}.
2. The location of the C189 line is shown on attached maps titled Line List 8954 \& 8957. The proposed reconstruction of structures will only occur on Line List 8954.
3. This portion of the C 189 line will be on steel structures. The energized conductor is in a vertical configuration using 795 kcmil . The structures will have 1 ground wire, an OPGW with sag coefficients similar to 19\#10 Alumoweld.
a. The C189 line crosses the parcel LL 8954, State of New Hampshire - Adjutant General Department for approximately $1,000^{\prime}$
4. Energized conductors will have a maximum tension of 9,000 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, $1 / 2$-inch radial ice). Ground wires will have a maximum tension of 5,500 pounds at NESC 250B Heavy weather case (0 degrees F, 4 pounds per square foot wind loading, ½-inch radial ice).
5. The C 189 line is a 115 kV alternating current (AC) line.
6. Eversource has investigated a multitude of weather and loading conditions for its design. Eversource used these design conditions and combinations thereof to determine the minimum clearance of all conductors to both ground and aerial obstacles, between the phase conductors and OPGW cable. Eversource has determined that the weather cases and combinations listed below results in the minimum clearance and control over all other weather conditions and combinations. All NESC clearances have been met by exceeding the horizontal and/or vertical clearances required. Minimum distances to ground per the NESC have been met.
a. Ground wires - Due to the fact that the ground wire is located above the energized conductor, its clearance to the ground will always exceed the minimum required NESC distance.
b. 285 degrees F - Maximum operating temperature (energized conductor) based on Eversource transmission standards the maximum sag for this weather case controls.
Path: IIESPSRVDatalData2IProjectsINUSI53899_DC_TlinelGISDataFiles_ArcDocsIState_Land_MapsIState_Land_Crossing_Permit_LL8954_8957_Lettersize med fraser 8/21/2015 COPYRIGHT © 2015 BURNS \& McDONNELL ENGINEERING COMPANY, INC.

LEGEND

NORTH
1
Λ
THE NORTHERN PASS

